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Programmers in many fields are interested in building new languages. In the same way that
high-level languages increase productivity by allowing programmers to accomplish more with a given
amount of code, a special-purpose language can reduce repetitive code and hide implementation
detail, making a program’s structure and function more evident. Sometimes an entire new language
is called for, and other times an existing language serves most needs but could benefit from a few
additional elements. However, current tools support this kind of extension poorly.

Language tools typically represent programs internally as trees which are easily extended with
new types of nodes. However, in today’s languages the programmer only indirectly manipulates
this tree—through a parser which analyzes free-form text (that is, concrete syntax) and builds
an abstract syntax tree (AST). The limitations of parsers make languages difficult to extend and
severely constrain the choice of notation. In other words, what one writes and reads is dictated by
what the parser is able to handle.

I explore an alternative approach: represent source code directly as an AST and derive both
an executable program and a readable presentation from it. I present a flexible representation for
ASTs, a general mechanism for transforming these trees, and a language for grammars which allows
concrete syntax and semantics to be defined via these transformations. I show that this approach
is modular, easy to understand, and expressive enough to define novel syntax and semantics.

My prototype system, Lorax, demonstrates the new approach. Reductions for presentation
and execution are written in a functional language with meta-programming features. Syntax is not
limited to simple text but may include richer notation for easier reading and understanding. A
structure editor renders this rich syntax, using algorithms from TEX. In Lorax, the barrier to entry

for the creation of languages is lowered, making it practical for programmers to express solutions



in the terms and the notation which are closest to the problem domain.



Dedication

To PJ and Kevin.



Contents
Chapter
1 Introduction
1.1 Existing Approaches . . . . . . . . . . .
1.2 ANew Way . . . . . . . o e
1.3 Related Work . . . . . . o L L
Abstract Syntax Trees
2.1 Nodes, Values, and References . . . . . . . . . . .. ... ... ...
2.2 Specifications . . . . ...
2.3 Reduction . . . . . . . e
2.4 Characteristics . . . . . . . . . .
2.4.1 Compared to XML . . . . . . ..
2.4.2 Compared to S-eXpressions . . . . . . . . ..o e e e
Languages
3.1 Grammars . . . . ... e e
3.1.1 Abstract Syntax . . . . . . . ... e
3.1.2 Reductions . . . . . . . .
3.2 Kernel Languages . . . . . . . . ..
3.3 Presentation Languages . . . . . . . . . ...

3.3.1 The expr Presentation Language . . . . . . . . . . ... ... ... ...

vil

11

11

13

14

15

17



3.3.2 Expressive Power

3.4 Extending the Grammar Language . . . . . . . . . . . . ...

4 Implementation

4.1 The Host Platform . . . . . . . .. . ..
4.2 The Host Language . . . . . . . . . . . . .
4.2.1 The Kernel Language . . . . . . . . . . . e

4.2.2 Meta-compilation

4.2.3 Core Language . . . . . . . . . e
4.2.4 Compiling Reductions . . . . . . ... .. o
4.3 Rendering the Expression Language . . . . . . .. ... ... .. 0.
4.3.1 The view Presentation Language . . . . . . . . . . .. ... ... ...
4.3.2 Rendering the view Presentation Language . . . . . . . . ... ... ... ..
4.3.3 Renderer Implementation . . . . . . ... ... .o oL
4.3.4 DMeta-reduction of expr . . . . . . . .
4.3.5 Fallback Presentation Reduction . . . . .. ... ... ... ... . ......
4.4 Editing . . ...

4.4.1 Editor Pipeline .
4.4.2 Selection . . ..
4.4.3 Identifying Nodes

4.4.4 Edit Actions . .

by Position . . . . . ... oo

4.5 Example: Entering Expressions . . . . . . . . ..o oo

5 Case Studies

5.1 Defining the Core Language via Syntax Extension . . . . ... ... .. ... ....
5.1.1 List Comprehension in Lorax . . . . . . . . .. . ... ... ... .......
5.1.2 List Comprehension in Lisp . . . . . . . . . . . . .. .. ... ... ... ...

5.1.3 Concrete Syntax

viil

24

26

28

28

29

30

32

33

34

34

34

38

40

40

41

42

42

44

45

46

47

ol



5.1.4 Evaluation . . . . . . ...
5.2 Introducing a New Runtime Value . . . . ... . ... ... ... ... ........
5.2.1 Enumerating the Positive Rationals . . . . . .. .. .. ... ... ... ...
5.2.2 Continued Fractions in Lorax . . . . . . . . .. ... ... ..
5.2.3 Evaluation . . . . . . ..

5.3 Final Notes

6 Conclusion

Bibliography

X

54

54

95

56

99

60

62

64



Tables

Table

3.1 Types of atoms in the expr language.



Figures

Figure

1.1 The problem of turning an idea into a program, and three different solutions.

1.2 Lorax . . . . . . e

3.1 A simple node declaration. . . . . . . . ... ... ...
3.2 The or node of the core language, including reductions. . . . . . ... ...
3.3 Definition of binaryNode as an extension of the grammar syntax. . . . . .

3.4 Some infix operators defined using binaryNode. . . . . . . .. . ... ...

4.1 Grammar for the host kernel language. . . . . . . . .. .. .. ...
4.2 Example core language expressions and their values. . . . .. ... ... ..
4.3 Program fragment using a cube node, which hasn’t been defined. . . . . . .
4.4 The Lorax editor, showing a portion of the grammar for the core language.

4.5 Reductions in the editor pipeline. . . . . . . . . ... Lo

4.6 A simple expression in Lorax, annotated to show relative node positions. . .

5.1 Declaration of the cons, match-cons, and for node of the core language. .
5.2 List comprehension macro in Clojure . . . . . . . ... ... ... ... ...
5.3 Grammar for operations on continued fractions as runtime values. . . . . .
5.4 Operations on continued fractions. . . . . . ... ... .. ... .......

5.5 Enumerating the rationals, using continued fractions. . . . . . . . ... ...

xi



Copyright Moss Prescott 2010



Chapter 1

Introduction

Many kinds of programmers are interested in building new languages. General-purpose lan-
guages evolve slowly, but even so a dominant language like Java undergoes change over the years,
adding new concepts and syntax [18]. New computer architectures spawn new languages [3][35][44],
software engineers talk about how and when to build and use Domain Specific Languages [15], and
of course programming language researchers are continually designing new languages to use or to
analyze. Yet the technology that is currently used to construct programming languages does not
support these kinds of creative activities very well, and often the lack of good tool support is a
major factor discouraging the creation and use of a new language.

The design and implementation of languages, undertaken by a relatively small group of
“language vendors,” is often seen as a separate task from the creation of programs by the much
larger population of language users [42][50]. However, another approach, often identified with
the Lisp community, views the task of writing a program as combined with the building of a
language into one activity [19]. These two perspectives go along with different tool sets, and the
large disparity in goals suggests an opportunity exists to combine some of the strengths of both
approaches in a single environment.

Furthermore, computer language technology could potentially be used in many more contexts.
For instance, any class of structured documents (say recipes, essays, math problems) could be
represented with a language defining the required elements and their relationships to each other.

The tools used to create these documents are often far more user-friendly and visually rich than



programming tools, but they fail to identify the underlying structure of the documents, trapping the
data in a panoply of closed formats which obscure the valuable content. If the tools programmers
use to create and work with languages offered better expressivity and were simpler to employ,

software for creating many kind of documents could be built on similar foundations.
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Figure 1.1: The problem of turning an idea into a program, and three different solutions.

Figure 1.1(a) illustrates the basic situation. A programmer has an idea for a program she
wants her computer to run. To accomplish that, she needs to put the image in her mind into a form
that can be understood by her computer. Since the advent of structured programming, virtually all
programming languages have represented programs in terms of computational constructs arranged
into a hierarchical structure. This tree-shaped structure, often called an Abstract Syntax Tree
(AST), allows an infinite variety of programs to be constructed out of a small, fixed number of
constructs, and provides an unambiguous representation for programs which can be consumed by
tools such as compilers and interpreters. The programmer, on the other hand, may or may not

think of her program in this way, and in any case she must translate the idea in her head into an



AST, and then in a separate effort construct that AST within the memory of her computer.

Figure 1.1(b) shows the simplest solution. The programmer describes the AST directly in
a form that requires little or no interpretation. For example, she can write a Lisp program in
s-expressions, using parentheses to explicitly indicate the nested structure of her program. In doing
so, she actually engages in a process of action and feedback. She types a bit, perhaps attempts
to run the program, reviews the program’s source text (really only a thinly-veiled AST), and then
elaborates on or revises the program. The programmer is able to inspect the AST almost directly,
but has to do so by counting parentheses (dashed arrows in the figure show the path of feedback
from the computer to the programmer).

These languages are easy to extend because introducing a new construct is accomplished
by simply defining a new symbol, but the extra effort required to read them is off-putting to the
overwhelming majority of programmers. This has lead to a decades-long cycle of proposals to “fix”
the syntax and counter-argument [40].

Instead, the majority use the model diagrammed in Figure 1.1(c), where another representa-
tion stands between the programmer and the AST. Now she enters her program as free-form text,
which is interpreted by a parser as directions for constructing the AST. This allows for a more
“natural”-appearing syntax, but it also inserts a level of indirection between the programmer and
her program. The feedback loop of idea to program and back now goes from mind to text and back,
without ever involving the AST. In fact, the AST is now a mere by-product of the source text.

The parser imposes both limits and costs. Because the textual syntax acts as both interface
and specification, a tension is created between economy of expression (to serve the needs of the
programmer) and precision (to allow a parser to construct the right AST). An economical syntax
will often involve local ambiguity, because leaving some things unsaid which can be inferred from
context is a hallmark of human communication. Furthermore, if language extension is to be an
integral part of the construction of software, it is inevitable that different programmers working
on different parts of a system will create language elements that are superficially similar, and that

other programmers will need to combine these elements together.



In the presence of these ambiguities, parsers have to become context-sensitive to some extent.
One solution is a custom parser—such as those commonly used to parse languages like Java and
C—which is designed to handle a particular language and not easily extended. Therefore, these
languages tend to provide a single fixed syntax and the cost to change it is very high—you may
have to convince a standards body to incorporate your idea, and then wait for compiler vendors
to implement it. The other is a more sophisticated parsing algorithm, which may be able handle
local ambiguity, but the design of such parsers is an ongoing research problem, with significant
performance costs [16].

A third approach is structure editing. In Figure 1.1(d), the programmer operates on the
AST, with both presentation and editing mediated by an interface which explicitly understands
the structure of the language. The first advantage of this setup is that the program’s source is
represented in the form of an AST, is edited at the level of the AST, and is always presented
back to the user in terms of meaningful AST nodes. It’s no longer possible for the programmer to
read the program one way while the parser disagrees. Secondly, the visual representation of the
program—as well as the programmer’s method of interacting with it—are not constrained to lines
of text. The editor is free to supply more sophisticated layout, rendering, and forms of interaction.

Yet this power comes at a high cost. To construct a structure editor for a complete language
is a large effort which may or may not justify its cost [33]. Worse still, structure editors are too
specialized and too limiting to be embraced by real working programmers, who have accepted the
weaknesses of the parser-driven approach and have grown dependent on a universe of text-based
tools. Thus structure editors find use only in certain niches, where the benefits outweigh the

perceived costs (e.g. end-user programming, CS education) [5].

1.2 A New Way

Each of the three approaches just described makes a fundamental trade-off between the
conflicting goals of readability, expressive power, and extensibility. This thesis strikes a new balance,

showing that by giving up textual source code, a new way of building languages can combine the



expressive power of Lisp with the best syntax you can devise. I present a unified framework for
constructing languages, editors, and compilers based on two simple ideas: all source code and
derived objects are represented from the start as ASTs, and source is transformed into derived

trees via reductions written in a simple, extensible, functional, meta-language.
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Figure 1.2: Lorax

Figure 1.2 shows the high-level structure of Lorax’s editing and execution model. Both the
executable form of a program and its visual representation are defined in terms of ASTs (labeled
kernel and view). The translation from the source form to these derived forms is specified in a
modular way, with the same tools used to construct core languages and extensions. The programmer
operates on the source AST in a relatively direct way, but this interaction is mediated by the “view”
transformation, which presents the program in a familiar and understandable form.

The benefits of this approach are:

(1) When constructed this way, a structure editor can be flexible enough to work with programs
in multiple languages constructed in a dynamic process and freely embedded within one

another.

(2) Defining new language constructs or even entirely new languages is as simple as writing a

program in an existing language, and the resulting languages are fully supported by the



editing environment. Thus the barrier to entry for creating new languages is significantly
reduced, and this approach may become a more routine part of the process of writing

programs.

(3) Freed from the constraints of parsing, more sophisticated presentation becomes easy to
achieve. The tools prototyped so far can achieve excellent readability for typical program-

ming constructs, but also support rich, familiar, mathematical notation.

1.3 Related Work

Two recent projects have some of the same goals, and share the fundamental idea of moving
to a tree-based representation for source code. Intentional Software is working on a tool based on
Charles Simonyi’s Intentional Programming work from the 1990s [41], but little detail has been
made public [42]. The system appears to be targeted to large teams made up of domain experts
who are knowledgable in some field, and domain engineers who are expert programmers, tasked
with developing languages for the domain experts to use. Despite the difference in specifics, the
Intentional Programming manifesto from 1995 aligns well with the assumptions and ideals of this
thesis.

The Meta Programming System (MPS) [10], from JetBrains, is a semi-proprietary product,
which seems to be aimed more at programmers building languages for their own use or for the
use of other programmers. MPS is based on an object-oriented approach to nodes and generation
of (Java) code from the tree-structured source. Its editor and presentation language seem to be
limited to mimicking the appearance and interaction style of textual source.

Both these systems seek to provide a complete environment for producing software (a Lan-
guage Workbench [14]), displacing the conventional tools, and consequently they are multi-person-
year projects. This thesis aims to show that useful functionality is possible with just a small,
compact system.

MetaEdit [46] is a commercial system aimed at (non-textual) modeling languages. Tools ad-



dressing the difficulty of implementing good tool support for textual DLS are many, often targeting
the free Eclipse IDE platform: [12][28][48].

Structure editors, or syntax-directed editors, had their greatest flowering in the 1980s, but
usually had very different goals, including improved compiler performance (via incremental compi-
lation) [45][52]. Lang provides an interesting retrospective [33].

Barista [32], built on Citrus [31], is a more recent structure editor for Java exploring new
user interface paradigms for editing code.

The Fortress language [2] has similar aspirations with regard to the faithful reproduction of
mathematical notation. Indeed its creator cites improved notation as one of three key ideas for the
language [43]. It supports the use of any Unicode [1] symbol as an operator. However, Fortress’s
primary source format is ordinary text; programs are typically written in text and then translated
to a richer presentation (via TEX) for publishing. This approach harks all the way back to Algol
60’s multiple languages, and even the never-implemented m-expressions of Lisp. The Fortress spec
also includes a mechanism for syntax extension, but it does not appear to have been implemented.

I present a representation for ASTs and fundamental tools for manipulating them in Chap-
ter 2. Chapter 3 shows how languages are defined and extended. Chapter 4 describes the prototyped
system which implements these ideas, and Chapter 5 presents two case studies of the effectiveness

of the system for defining new syntax and programming constructs.



Chapter 2

Abstract Syntax Trees

To build programs directly out of nodes, we need a common representation for nodes. It must
be flexible enough to represent many kinds of programs and support the kind of editing operations
we will want to provide. It should provide a natural way to represent the primitive values which
appear in programs, and the common ways of aggregating values into larger structures. It should
be able to represent arbitrary programs, and allow nodes to be freely composed without imposing

any fixed constraints but always maintaining a clearly defined structure.

2.1 Nodes, Values, and References

A program is a tree made up of nodes. Every node has a type, a unique label, and a value. A
node’s type identifies it as one of a class of related nodes, all of which have some common meaning
(for example, the type plus might represent addition expressions). A node’s label is an opaque
identifier which gives it a distinct identity, and allows references to nodes to survive transformations
of the program. A node’s value may be: empty, if the node type alone carries all the node’s meaning;;
an atomic value, which is a boolean, integer, or string (a sequence of characters which are treated as
an indivisible value);! a sequence of n child nodes (indexed by integers 0 to n—1) or an (unordered)
map of distinct atiribute names to child nodes. A reference is a special type of node which has the

type ref, and has as its value the label of another node.

1 An alternative would be to treat single characters as a primitive value, and build strings out of sequences of
character-valued nodes. For the current purpose, treating strings as atomic is more efficient and simpler to deal with
during editing.
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I define these four kinds of nodes because they seem to be sufficient to represent the elements
of programs for the languages I experimented with. These elements seem to fall into four categories,
corresponding to the four kinds of nodes. Of the four, map nodes are the most commonly used,
and their ability to contain an arbitrary set of attributes is key to the extensibility of the system.
Sequences are represented as first-class nodes (rather than as, say, multi-valued attributes) primarily
for the convenience of the editor, discussed later. Note: sequences can often be viewed as map nodes
where the attributes are identified by integers rather than names and again the distinction is made
mostly for convenience of implementation.

The program is well-formed if its nodes satisfy the following constraints:

(1) No two nodes have the same label.

(2) No node appears as a child of more than one parent, or under more than one index/name

of a sequence/map-valued node (so the nodes form a tree).

(3) The value of each reference node is the label of some node in the program.

Nodes are immutable values, so a program is a persistent data structure [39]. It is relatively
efficient to construct a modified program by building a new tree sharing much of the structure of
an existing tree.

Note that any node can be considered as the root node of a sub-tree consisting of its descen-
dant nodes. A sub-tree of a well-formed tree will be well-formed unless it contains a reference to a
node which is not part of the same sub-tree. Such a reference is analogous to a free variable, and
can play a similar role.

For the sake of modularity, types and attribute names are associated with namespaces. Simple
names can be used without fear of unintentional collisions.

These minimal constraints allow trees to be transformed into one another using familiar
functional programming techniques, and ensure that operations on trees have well-defined results.
Therefore, Lorax requires that trees be well-formed at all times, and its components are designed

to enforce these constraints.
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2.2 Specifications

A specification constrains the structure of nodes in a program. A program is wvalid with
respect to a certain specification if the arrangement of nodes, values, and references satisfies the
specification’s constraints.

In practice a program may contain violations of a specification, and the user will be interested
in the nature of each violation in order to be able to fix them (by correcting either the program or
the specification). Therefore a specification will typically be implemented in the form of a checker, a
function over programs that produces a set of errors each consisting of a description of the problem
and the location where it occurs.

Depending on the nature of the properties being checked, a specification may be defined only
in terms of local properties of individual nodes and their direct children, or may refer to non-local
relationships between nodes more distantly connected. In general, local properties are easier to
define, easier to check, and easier to understand, so for the most part they are to be preferred. In
section 3.1, we describe a particularly direct and convenient way of specifying these basic structural
properties which is sufficient to define the abstract syntax of a programming language.

By providing a modular way of describing and checking properties of programs, specifications
give much-needed structure to the open model of ASTs described in the preceding sections. They
do not, however, restrict the user’s ability to modify and extend her program and/or language,

even if that means the program is invalid at times.

2.3 Reduction

The next step in making a useful system is providing a way to produce (multiple) target
programs from a given source program. The central idea is to have a source program, consisting
of nodes in some “user” programming language, which includes a node type for every important
programming construct. In an extensible system, the user is able to add new types of nodes or

even entire languages to a running system, even though the underlying system only understands a
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fixed set of node types. The way to bridge this gap is via reduction.

Reduction is a restricted form of graph reduction, inspired by the macro expansion process
of Lisp.?2 In fact the term “expansion” might be more appropriate because a typical reduction
replaces a more abstract node with a larger number of simpler nodes.

A source program is reduced to a target program by applying a reduction function to the
root node of the source program. If any reduction is possible, the reduction function returns a new,
replacement root node, which typically repackages the children of the original root node under
some new kind of parent. As long as some reduction is performed, the reduction function is applied
repeatedly to the previous result. Eventually, the root node is fully-reduced (the function fails to
return a new reduced node). At that point, each child node is reduced in the same way, and a new
root node is constructed with the reduced children.

Because each reduction step constructs an arbitrary replacement node, it’s possible at least
in theory to write any arbitrary transformation as a reduction. This means, for one thing, that
reduction may not terminate. This generality, and the potential errors it allows, are typical of
meta-programming systems; the full power of the language is available at compile-time, including
the ability to introduce bad behavior. Although a system with less expressive power might be
capable of meeting the need with less potential for bad behavior, in practice the kinds of problems
that are encountered are most often easily fixed, provided that the system gives reasonably good
error reports and no permanent damage is done when reductions do not perform as expected.

During reduction a series of intermediate programs are produced which are partially reduced,
and in general do not conform to the source or target specification. It might be interesting to
investigate ways of defining specifications and reductions such that it could be statically shown
that a valid source program always reduces to a valid target program. I have not investigated
how this might work, but it certainly would require imposing restrictions on the results that could

be produced by reductions, suggesting at the very least a static type system for the language of

2 When I use the term “Lisp”, Im referring to any of the many variants of Lisp, including Maclisp, Common Lisp,
Emacs Lisp, Scheme.
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reductions.

As a practical matter, it’s convenient to define reduction functions only for properly-formed
inputs. This can be facilitated by declaring both the specification (e.g. expected attributes for
each node type) and the reduction (given a node with those attributes) at the same time. If the
specification defines only local properties, then the reduction should assume only the presence of

some node at each required location, but make no demands on the form of these child nodes.

2.4 Characteristics

This way of constructing program source has some implications for the way languages can
be defined and the way programs can be worked with.

Node types, attributes, and specifications naturally fit with the concepts of tree grammars,
which allows specifications to be defined in ways that are familiar to language designers (i.e. with
a grammar). Because grammars so-defined will be used only for checking tree structure and not for
parsing, they can be constructed in the natural way, without any need for tricks to work around
parsing algorithm shortcomings (e.g. left-factoring).

Programs are self-describing. Each node carries an explicit declaration of its meaning, and
each primitive value is manifestly of a certain type. This is in contrast to a textual language,
where the same sequence of characters might represent a name, data, or a keyword, depending on
the context in which they appear. This is a major advantage especially for tools that manipulate
programs, because no parser is necessary to extract the structure of the program.

Labels provide robust source locations. The label provides each node with an identity that
survives when the other parts of the program are changed, or when the program is serialized to
non-volatile storage, etc. Thus labels provide a way for tools (e.g. compilers and debuggers) to
refer to source locations. For example, a typical refactoring operation such as changing the name
of a variable or moving some code from one place to another looks like several unrelated changes to
a diff tool that has two versions of source text to look at, but a similar tool operating on labeled

nodes could compare each node, even if the location, the content, and even the type of the node
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have changed.

Reference nodes provide a way of referring to entities in a program which can never be
ambiguous, and is independent of such language-specific notions as names and scope. Using labels,
as opposed to, say, pointers to the referenced node, keeps the tree simple, makes the relationship
explicit, and allows references to be inspected without recourse to low-level techniques. Reference
nodes require special support from editors, which may also take advantage of the explicit reference
structure to provide enhanced presentation of references (which in a textual setting would require
knowledge of not only the lexical but also the semantic structure of the language).

Nodes may be serialized for storage, distributed processing, etc. Assuming a choice of charac-
ter set and encoding, all the components of a node can be easily converted to a stream of characters.
Node types, labels, and attribute names can be simple strings; boolean, integer, and string values
are easily handled; map and sequence values pose no great challenge. Because the representation
permits only trees, each node can be serialized when it first occurs; there’s no need for an encoding
of back-references. Moreover, the choice of serialized format is not so important because the struc-
ture of programs is defined at the level of nodes. Any serialized form that preserves the meaning
in the terms defined above is equally good.

This representation of programs as nodes has some things in common with a handful of other
tree-structured representations source code and/or intermediate representations within tools such

as compilers.

2.4.1 Compared to XML

XML and other related markup languages, are designed to augment textual data with explicit
structure for a variety of purposes. The structure of an XML document has much in common with
the structure of nodes as defined here, and the XML Infoset[6] model for documents in particular

has a similar flavor. However, there are some important differences:

(1) The child elements of each node in an XML document are always in an ordered sequence,

while named attributes can contain only simple character data. In Lorax, a node’s children
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may be ordered or named, whichever makes sense, and there is no separate notion of

attribute values vs. child nodes.

(2) XML is explicitly a format for character streams, onto which an abstract model can be
imposed post-hoc. This leads to many awkward and ultimately uninteresting problems,
such as when to ignore white-space and when it should be included in the data model.
In Lorax, the source AST is defined in terms of the relevant types, and only nodes that

actually contain character data are represented as characters.

(3) Because XML is meant to be human-readable in a weak sense, text-editors are still the
dominant mode of interaction with it. Although there are WYSIWYG tools for editing
and viewing certain kinds of XML documents (e.g. SVG[38], docx[36]), there are few

general-purpose tools for working with XML per se, aside from text editors.

XML’s undesirability as a concrete syntax for programs has been well-established, and stands
as an example of the usability challenges posed by representing source code as structured data
[26][8]. I believe this this failure largely results from the use of the textual representation as the
editing interface. Although the XML syntax is particularly bad in this regard, any general-purpose,

textual markup language will suffer in terms of readability for the flexibility it provides.

2.4.2 Compared to S-expressions

Most Lisp programs are written in s-expressions, a simple data structure offering only lists,
symbols (i.e. names), and a handful of types of primitive values. This simplicity gives considerable
generality and flexibility, because it allows any number of new constructs to be introduced simply
by defining new forms (macros). However, the use of s-expressions directly in lieu of a concrete
syntax has been a highly divisive choice, essentially separating the population of programmers into
two “camps”. Only those who are not put off by sequences of nested parentheses can appreciate
the expressive power that Lisp offers.

It is a major goal of this thesis to establish that the expressive power of the Lisp model can
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” Lorax’s representa-

be realized in the context of a language that can be read by “the rest of us.
tion for nodes has the same generality and free extensibility as s-expressions, and its simple and

unambiguous structure makes it ideal for defining and transforming programs.



Chapter 3

Languages

The preceding chapter described a representation for programs which is suitable for any
language. To define a particular language in this framework involves defining three aspects of the
language.

The abstract syntax of the language defines what nodes may appear in a program, and in
what relationship to each other. In Lorax, abstract syntax is defined by a program in the grammar
language. The grammar program is first and foremost a specification which defines what programs
are (syntactically) valid.

Every language must have a semantics that gives its programs meaning. A particularly
economical way to give semantics is to define a minimal kernel language and then define the
remainder of the language in terms of reduction from an enriched syntax to the kernel syntax.
Concretely, when a grammar defines a node type, it may also define the semantics of the construct
by means of a reduction to a more primitive construct. This approach is commonly used to define
languages, but not necessarily to implement them (see, e.g. Mozart [47]). In Lorax, as in Lisp,
this economical approach is opened up to the programmer—the same extension mechanism used
to define the core language is available in all programs. The example of Lisp (particularly, Scheme
[11]) shows this to be a workable strategy, so the experimental question is how well it applies in
this new setting.

Thus a Lorax grammar defines a language’s syntax and gives a semantics for programs in that

language in terms of the kernel language programs they reduce to. A second kind of semantics that
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may be desired is static semantics, that is, specification of additional constraints on valid programs
including anything from proper scoping of references to a type system. These constraints could
also be specified in a grammar language, but Lorax does not currently support such declarations.

With abstract syntax and semantics taken care of, both the Lisper and the Programming
Language Theorist have all they need and will go happily on their ways. However, we would like
to go further than that, so one more element is needed. Concrete syntax is what the user reads
and writes. The goal is to take advantage of the new approach to do things with concrete syntax
that are impractical or impossible to do with textual source code. In Lorax, the concrete syntax of

each type of node is given as a reduction to a presentation language.

3.1 Grammars

A grammar defines all three aspects of a language. The abstract syntax is defined prescrip-
tively, by identifying the subset of all possible programs which are valid. Both the semantics and
concrete syntax are defined operationally, as declarations of what reduced program and what visual

representation will be derived from each source node.

3.1.1 Abstract Syntax

A program is valid with respect to a grammar if all of its nodes’ types, values, and references

comply with the constraints imposed by the grammar. For each node type, a grammar specifies:

(1) Zero or more abstract types, which are types for which the type being introduced is a

sub-type.
(2) For a sequence node, the expected number and (abstract) type of child nodes.

(3) For a map node, the expected attributes and the (abstract) types of nodes that may inhabit

each of them.

(4) When a child/attribute is a reference, the expected (abstract) type of the referenced node.



19

expr < pow {e:expr, n:int}

Figure 3.1: A simple node declaration.

Abstract types lend some modularity to the grammar. A new subtype of any abstract type
can be introduced later without changing any existing definition, and nodes with the new type can
appear as children of nodes which were declared using the abstract type. Figure 3.1 shows the
declaration of a hypothetical node type pow, for expressions raising some runtime value to a fixed
integer power. pow is an instance of the abstract type expr. To be valid, a pow node must have
an attribute e, containing a node whose type is an instance of expr, and another attribute n, an
integer. So far, this declaration mimics the way you might define a similar node as an algebraic
data type in a functional language such as Haskell or ML.

Note that all the grammar constraints except the constraint on the types of referenced nodes
are local in the sense described earlier—checking them requires inspecting only a single node and
its immediate children. Checking the types of referenced nodes requires being able to inquire about
the type of a node which may be anywhere in the program. However, this information is easily
extracted up front to a map of types for all nodes in the tree, so this one non-local check seems to
be worth including in the standard checker.

A grammar so-defined is not capable of specifying every interesting property of a language.
That is, not every syntactically valid program is correct. Depending on the nature of the language
being defined, additional, more ambitious specifications can define additional properties (e.g. static
semantics). The abstract syntax is meant to be an easily-defined first step, and to provide the
information needed by the editor to provide support for editing programs which use arbitrary new

node types.

3.1.2 Reductions

In addition to defining what programs are syntactically valid, a grammar provides a definition

of concrete syntax via a display reduction and of semantics via an expand reduction. Either or both
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expr < or {left:expr, right:expr}

1eft|for™ [right|[" | — |let 1 = [tef¢] in (if I then I else [right|
[ttt fox | | right] )

Figure 3.2: The or node of the core language, including reductions.

reductions may be present in a declaration. These reductions are code fragments which are used to
construct reduction functions (see section 2.3) which take a program in the source language defined
by the grammar and reduce it to a derived program. Using a meta-programming approach, the
reductions are economical and simple to define, but the full host language is available for use in
reductions when needed.

A display reduction is always present and reduces a source node to a presentation language
node (often the root of a sub-tree containing several presentation language nodes). On the lower
left in Figure 3.2 is the display reduction for or nodes, which arranges the left and right children
of the node into horizontal sequence, separated by the keyword “or.”

An expand reduction is used to reduce a node in preparation for evaluation or execution,
and therefore defines the semantics of the node. The result of this reduction is a node in the target
language, or else a node that will itself be reduced, eventually to a target language node. The
declaration of a node type does not provide a expand reduction if the node is part of a target
(kernel) language. On the lower right in Figure 3.2 is the expand reduction, which defines the
behavior of the or construct in terms of kernel language constructs: it evaluates the left argument
and yields the value if it is not false, otherwise it evaluates the right argument and yields that
value. This kind of short-circuiting evaluation returning the first “true” value is a common way of
implementing the logical “or” operator in scripting languages [13][24][37].

It is easy to define a reduction that fails to terminate (for instance by producing a node of
the same type), or which “blows up” (by producing a larger, but no more reduced, node). The
usual approaches to proving termination of recursive algorithms apply. In any case, once language
definition is part of the development process, it should no longer be so surprising that problems

can arise at that level. Because you are your own language vendor, you can simply fix it; it’s not
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like finding a bug in your C++ compiler, which you may have no capability to fix.

Thus the abstract syntax, semantics, and concrete syntax of every derived language construct
are defined together in a simple, declarative style. Each construct is self-documenting; any use of
a new construct can always be expanded (manually or automatically) to the equivalent reduced

program.

3.2 Kernel Languages

A kernel language is one whose nodes have some fixed, pre-defined semantics (typically, they
can be interpreted, yielding some specified result with some specified side effects). A complete
language is built by extending a kernel language with additional nodes whose semantics is defined
in terms of reduction to (ultimately) the kernel language.

Any language can act as a kernel language in Lorax. If the kernel language is of a more
conventional type, say Java, all the constructs of that language have to be defined as primitives.
Additional constructs could then be defined via reduction to ordinary Java syntax. After reduction,
the target program would be processed by a Java compiler to produce an executable. Thus a
language like Java is a suitable kernel language, but hardly a convenient one.

I designed the Lorax’s host kernel language to be much simpler to implement and use. The

host kernel language is designed to be:

(1) Minimal, but sufficient to define a general-purpose language via extensions.

(2) A meta-language, able to consume and produce nodes.

(3) A “functional” language, operating naturally on immutable nodes and trees.

(4) Easily implemented and easily integrated with existing software.

These characteristics make the host kernel language—and the core language built on top of
it—ideal for implementing Lorax itself. For example the reductions themselves are written in it. I

describe the host language in detail in section 4.2.
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3.3 Presentation Languages

The nodes of a presentation language cast program elements in visual terms. A presentation
language should be independent of the particular syntax of any one language, but might be suited
to a particular family of related languages. Crucially, the presentation language must be flexible
enough to represent any conceivable construct that might be added to the source language. This
is achieved by providing composable elements in the presentation language that can be combined
in new ways to create new concrete syntax. In Lorax, a single presentation language is currently

implemented.

3.3.1 The expr Presentation Language

Lorax’s expr presentation language is well-suited to representing the expressions that make
up the declarative portion of a typical modern programming language in the usual way, except that
it provides more typographically-rich elements. It can also reproduce much of the familiar notation
of algebraic expressions.

An expr program is represented internally as a tree made up of boxr nodes. Each box node
occupies a rectangular area of the rendering surface and always encloses the areas occupied by any
child boxes, although this structure is not visible to the user, who sees a familiar layout of keywords,
operators, and other textual elements. Several kinds of boxes are available in expr.

An atom is a box that renders a sequence of characters and/or symbols using the normal
spacing for text. Several types of atoms are available, each conveying what kind of entity the
characters are meant to represent. When atoms are reduced to lower-level nodes, a distinctive
typographical treatment is applied to each, as shown in Table 3.1. The set of atom types is meant
to be easily expanded to serve the needs of any conceivable source language. The total number
of types in any one language is probably limited to a dozen or so, and many are common across
languages. Therefore I conjecture that the universe of useful atom types is not much larger than

what expr currently provides. When a new type is needed, the effort to add it is typically small



Type Treatment Examples Typical use
keyword boldface true fixed language syntax
if
var italic x names (user-provided or generated)
g
fib
num none 1 numerical literals
2.0
3,000
string sans serif abc character literals (note special
Hello,_world  treatment of the space character)
name boldface, italic a name literals
foo
mono monospaced nil external references
cons
prod monospaced, italic ezpr node types in grammars
left
symbol none — mathematical symbols
S

2
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Note: the actual character content of each type of atom is arbitrary, except symbol, which handles
only a pre-defined set of available symbols.

Table 3.1: Types of atoms in the expr language.

(most simply specify a font and/or face),

Composite boxes contain child boxes which they arrange in a certain way. A sequence is a

horizontal arrangement of nodes separated by a certain amount of space. There are a handful of

sequence types, each implying a certain amount of inter-node space. The amount of space is a visual

indication of how tightly the sub-expression represented by the sequence binds, as I'll discuss in the

next subsection. A scripted node contains a nucleus and sub- and/or super-script nodes. Special

signs are similar to composites but also draw a glyph surrounding the child node(s). Examples are

radical and fraction, used in particular mathematical contexts.

A group node draws a pair of grouping symbols around a content node. Available symbols

include parentheses, various kinds of brackets, | floor |, [ceiling], and |magnitude|. All these symbols

expand vertically to visually surround their contents; this variation in size is aesthetically pleasing,

but can also provide a visual cue which helps the reader to match up the paired symbols.
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An embed node encloses its contents in a visual indication of being a separate unit, contained
within the surrounding context. A disembed node has the opposite effect, showing its contents as
being logically part of the outer level of code. These are used in the rendering of quotations, and

have been seen already in the example reductions in Figure 3.2.

3.3.2 Expressive Power

The diversity of atom types provides a measure of visual sophistication for programs, with a
very small effort on the part of the language designer. Simply by identifying a visual style for each
piece of syntax, some information about the meaning of each node is conveyed to the programmer.
The particular treatment is meant to match the readability and high aesthetic standards of the
pseudocode that might be found in a journal article or a good computer science textbook.! The
rendering of these fonts on screen at relatively low resolution of 100 dots per inch or less is not
really optimal, but given the trend toward more dense displays (as of late 2010, laptop displays
approaching 150 dpi are common and displays on handheld devices can be much higher than
that), it is likely that acceptable rendering of multiple fonts even at small sizes will soon be quite
achievable. In any case, the actual choice of how to present each type of atom is unrestricted; a
more conventional approach would be to use just a few fonts and instead use color to distinguish
different elements in the conventional “syntax-highlighting” manner [7]. These issues have been
explored heavily in the field of integrated development environments (IDEs), but few published
studies seem to exist. One reference is Harward, et al [21].

Because the expr language preserves the hierarchical structure of expressions and specifies
the visual layout of each sub-expression, it’s possible for the system to identify cases where the
nesting of expressions could lead to confusion, and to insert parentheses automatically in these
cases. This is done after the reduction of the program to the expr language, so it’s applied

consistently to any language construct, without special effort at the point of definition of a node.

! The reader can judge my success by inspecting any of the figures in this paper, most of which were captured
directly from Lorax’s editor as vector graphics.
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The expr language provides enough levels of spacing (four) to handle a moderately complex

expression without parentheses. For example, in the expression

if z < y+4! then ..

the factorial operator binds most tightly (!, no space), then addition is performed (+, with a thin
space), then comparison (<, medium space), and finally the conditional (if ...then ..., thick
space). Examples of how this works will be presented later.

A presentation language is concrete in that it represents the program as it is presented to
the user, however it is somewhat abstracted from the details of rendering characters and pixels.
The reduction from source to presentation language is therefore quite direct and simple. Once the
program is reduced to the presentation language, lower-level processing takes care of the details
of rendering. This lower-level processing is common to all languages using the same presentation
language, and does not need to be extended in the typical course of using (and extending) a source
language.

expr supports nested expressions well, and in combination with the lower-level presentation
language (described in section 4.3.1) it can produce good results for some moderately complex
programs if used with care. However to handle larger constructs such as classes or modules would
raise layout problems that expr is not really intended to address. For example, how to handle
indentation and when and how to break lines. Additional nodes could be added to expr to address
these issues.

Lorax’s presentation language, plus this kind of extension, should be able to implement most
general purpose programming languages, and allow their syntaxes to be extended in new ways.
With some additional features, it could also support new kinds of visualization and interaction for
source code. For example, embedded images as in Sikuli[51], or program elements that respond to
clicks as in a typical structure editor.

Going further, to serve the needs of different kinds of languages, entirely different presentation

languages could be defined, such as a “flowing text” language for documents, a “grid” language
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declaration < binaryNode {doc:doc?, type: name, op:drawable, fn:expr}

doc — || doc

binary m oy eXpr {left: expr, right:expr}

left | op | right — fn(leﬂ,‘, m'ght)

Figure 3.3: Definition of binaryNode as an extension of the grammar syntax.

for spreadsheet-like programs, a “flowchart” language for state machines, data flow programs, and
regular expressions, and so forth. These styles might call for an entirely new low-level presentation
language and renderer, but the underlying framework of Lorax would be able to handle the jobs of

defining languages, and validating and transforming the programs.

3.4 Extending the Grammar Language

The grammar language (section 3.1), host language (3.2), and presentation language (3.3)
work together to support the definition of new language constructs. A grammar is a Lorax program,
so the same tools for syntax extension are available for use in grammars. The grammar language
should be viewed as a starting point. It is meant to be general enough to define typical languages,
to handle most common needs for defining syntax, and to serve as a kernel language for grammars.

As an example, consider the variety of 2-argument, infix operators that we may wish to define
for the core language. If defined in terms of the kernel grammar language, each declaration will
echo the definition of or shown in Figure 3.2, varying only in the symbol used to represent the
operator, and the name of a function to invoke. This kind of duplication is a clear opportunity
for language extension, which you can do in Lorax by adding to the grammar for the grammar
language itself.

Figure 3.3 shows the declaration of a new grammar node, binaryNode, with just four
attributes for the parts of the declaration which are unique in each case: an optional documentation
string, the name for the node being declared, the symbol which will represent the new operator for

display purposes, and a function in the host language which implements the operation.
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Addition

binary plus |+ — @

String formatting

binary format |% —

Set membership
binary contains —

Figure 3.4: Some infix operators defined using binaryNode.

The display reduction (the blue, quoted box on the left) for these declarations mimics the
regular node declaration syntax but omits the declaration of attributes and has just four editable
elements. The expansion on the right is a quoted declaration which will be evaluated to produce an
ordinary node declaration. Compared to the five nodes of the simplified declaration, the expanded
declaration contains about 16 nodes. Like much syntax extension, the new node embodies the
well-known goal of eliminating code duplication [27]. As seen in Figure 3.4, node types declarations
using this new syntax are significantly simplified.

What’s happening here is the concrete syntax and semantics of the new construct are given
in the form of two small meta-programs. However, each reduction is presented in the rich syntax of
its target language (the expr presentation language itself on the left, and the grammar language
on the right), and the visual representation of quoted and un-quoted nodes gives the reductions the
look of a simple template with “holes” for elements to be inserted. Thus the grammar language

combines the power of meta-programming with a simple, understandable visual representation.
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Implementation

The Lorax prototype implements nodes, reductions, and grammars as described in the previ-
ous chapters, and a compiler for the kernel language. I built a core language via syntax extension
of the kernel language. The Lorax editor is capable of editing and executing both grammars and
core language programs.

The prototype demonstrates the feasibility of implementation all of the previously-discussed
concepts, and provided a test bed for experiments with defining languages and syntax, described

in the next chapter.

4.1 The Host Platform

The prototype system is implemented in Clojure [23], a language in the Lisp family which
runs on the Java Virtual Machine [34]. Clojure also fills the role of the host kernel language. Some

characteristics of Clojure that make it a good choice include:

(1) Similar notion of a kernel language. The prototype simply adopts (a subset of) the special

forms of Clojure as its kernel language.

(2) Functional orientation. Clojure is a non-pure functional language; it allows side-effects but

(in contrast to most Lisps) all of its bindings and data structures are immutable.

(3) Compilation service available at runtime. The Clojure compiler is part of the runtime

stack, so once a program is reduced to the kernel language, it can be evaluated (compiled)
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and executed immediately.

(4) Access to the Java platform. The prototype takes advantage of Java’s GUI toolkit for

rendering and editing.

Nodes are represented as a Lisp-style abstract data type comprising a series of functions
make-node, node?, node-type, etc., which allow Clojure programs to construct and manipulate
nodes independent of the concrete representation. The prototype uses only these functions to work
with nodes.

The implementation of the node ADT uses Clojure’s deftype construct to represent nodes
as instances of a nodetype class at the JVM level. This reduces the overhead for simple nodes
to the minimum. Map- and sequence-valued nodes use Clojure’s built-in persistent hash map and
persistent vector data structures (based on Bagwell’s array mapped tries [4]) to store their children.

The make-node function provides a convenient serialized form for nodes: s-expressions. A
print-node function turns a node object back into text which can be read and evaluated to re-

constitute the node. This low-level representation is never seen by the user of the system.

4.2 The Host Language

The host language is composed of a kernel based on the primitive constructs and values of
Clojure together with a core language built via syntax extension on top of the kernel language.
Lorax core language programs are reduced to the kernel language (via reductions defined in a
grammar program), to Clojure’s s-expressions (via the Lorax meta-compiler), to Java bytecode
(via the Clojure compiler), and finally to a native executable (via the JVM’s compiler /optimizer).
Therefore a program written using newly-introduced syntax runs without any fixed overhead. This
allows the editor to perform reductions during editing with good responsiveness, and allows for
non-trivial programs to be executed (see the next chapter). At the same time, taking advantage of
the Clojure compiler and platform allowed me to build a working system in a short time and with

only a modest amount of code. This efficiency allowed me to bring two previous approaches to a
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expr < nil {} < bind {}

expr < true {}

expr + var {ref: (refbind| ref lambda) }

ref

kw

true expr < lambda {pamms:params, body:expr}

flow
expr < false {} - -
< params [bindo"}

kw

expr ¢ Int {value:int} elem,

‘ format(“%,d”, meta. core/node—valuévalue)) ‘im

expr < recur {args:args}

kw
recur

expr < string {value’:string}

str
expr < app {ezpr: expr, args/:args}
Jjuxt
)

expr < name {value”:name}

‘ :view/ expr/disembetﬂ

< args [expro"]

expr « extern {name:string }

mono
expr < 1if {test:expr, then: expr, else:expr}

flow
expr + quote {body:expr} if< then " else/”
embed

expr + let {bind:bind, expr’ 1 expr, body’:expr}

* < unquote {levels:int?, body’:expr} kw [ sym o kw e
let = expr | in"" | body
disembed
body

Figure 4.1: Grammar for the host kernel language.

mostly-working stage before I arrived at the node representation, reduction scheme, and grammar

language described in this thesis.

4.2.1 The Kernel Language

The kernel language, shown in Figure 4.1, consists of six kinds of primitive values, six node
types corresponding to Clojure’s special forms, two nodes for quotation, and a node for making
external references to the platform. Virtually every node is an instance of the abstract expr type,
yielding some kind of value as a function of its arguments; there are no statements and no mutating

assignments.
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The kernel language is extremely simple compared to a typical general-purpose language.
Like Clojure, the kernel language is not statically typed, which helps keep Lorax’s implementation
simple—all checking of operands is done at runtime, by the Clojure/Java platform. All but a few
kernel language node types are instances of expr, representing expressions yielding a single value.
This simplicity makes the language easy to implement, and makes it an easy target for reductions.

The primitive values of the kernel language are the singular values nil, true, and false, plus
integers, strings, and names.

A lambda node introduces a function taking a fixed number of arguments. A params node
always represents the parameters of a function, and can appear only as the params attribute of a
lambda node. Each parameter is a bind node, discussed later. A lambda node is “bound” within
its body, supporting simple recursive calls. recur is a non-stack-consuming recursive call, and must
appear in tail position.

n-ary functions are included in the kernel language as they are in Clojure to allow a simple
mapping to Java methods for high performance without sophisticated compilation techniques. The
kernel language does not support Clojure’s variable-arity functions.

app is (call-by-value) function application. The expr is evaluated first (to a function), then
the expressions in args are evaluated from left to right.

Simple conditionals are provided by if. All values except false and nil are treated as true
when they appear as the test expression.

let evaluates an expression, binds a name to the resulting value and then evaluates its body
with that binding in scope. Lorax provides only a single-binding, non-recursive primitive let form.

A var node is a reference to the value bound by the parameter of a lambda, by the lambda
itself, or by a let expression. Variables are lexically-scoped, and lambdas capture all bindings in
scope at their point of declaration. All these forms are strict in all their arguments, and have no
side-effects.

An extern node refers to a variable at the Clojure level. This allows any function or value

defined by the Clojure platform or Lorax runtime to be accessed. Use of these external facilities is
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minimized in order to make the core language as self-contained as possible.

quote and unquote are given special treatment by the meta-compiler.

4.2.2 Meta-compilation

Given a program in the kernel language, a function meta-compile translates the nodes to
Clojure s-expressions in a mostly straight-forward way, due to the close correspondence between
kernel nodes and Clojure’s special forms. Only a few types of nodes need special consideration.

A bind node is reduced to a symbol, and a var node to the symbol of the corresponding
binding. The problem of producing suitable names and avoiding conflicts is easily solved due to
the uniqueness of labels in the Lorax program. The meta-compiler simply generates a new name
for each label and uses that name for both bind and var nodes.

When the meta-compiler encounters a quote node, it enters a separate mode where instead
of translating kernel language nodes to s-expressions, it instead translates nodes (potentially in
any language) to s-expressions that construct a new copy of the quoted nodes. When an unquote
node is encountered, the meta-compiler reduces the contents in the normal way, and then inserts
the resulting value into the expression building the quoted node. Quotations may be nested more
than one level deep, so the reduction keeps track of the current level and only resumes ordinary
translation when the level reaches zero.

When quoted nodes are compiled, they are relabeled (that is, each node is assigned a fresh,
globally-unique label) and each non-free reference is updated to point to the new node. This is
important because it means that no code outside of the newly-generated fragment can possibly
contain a reference to anything defined in it. For example, reductions for syntax extensions com-
monly bind values to names (in order to control evaluation order, for example), and each name is
defined by some bind node. So in a reduced program, each instance of the reduced fragment will
contain a binding which originated in the same node, but each binding is completely distinct and
independent in the reduced program due to the relabeling that is performed when the reduction is

executed. Because all names are unique at all times, the problem of unintended variable capture
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Examples using the core syntax for sequences:

$ 1:(2:mil

- 1,2

$ 1,2,3
— 1,2,3

$ let Ist = “a”, “b”, “C” in first[lst], first[rest[lst]], Ist[2]

U {178 [1PSi
—  “a”, “b”, “c

Note: f*(x) produces a lazy sequence, and x[i] uses no stack:

$ let inc = (fn o~ z+1) in (inc’(1))[999,999]

— 1,000,000

s 1..10
5 1,2,3,4,56,7,8,9,10

$ (:—100..1,000,000,000)[150]
— 50

s 42|y« 1..10
1,4, 9, 16, 25, 36, 49, 64, 81, 100

Figure 4.2: Example core language expressions and their values.

does not arise, and some of the complexities of providing “hygienic macros”[22] may be avoided.
Once a kernel language program has been meta-compiled, the standard Clojure function eval
is invoked, which compiles the expression to Java bytecode, loads it into the running JVM, invokes

it, and returns the result as a Clojure/Java value.

4.2.3 Core Language

The host core language provides common facilities built via syntax extension on top of the
kernel language. A subset of Clojure’s Core API [24] is implemented, plus primitives for con-
structing and manipulating AST nodes. Some examples using the syntax which exposes Clojure’s
cons-list primitive are shown in Figure 4.2. Some of the definitions used in these examples are

presented in Section 5.1.
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4.2.4 Compiling Reductions

To employ a display or expand reduction defined in a grammar, it needs to be transformed
into a reduction function which can be applied to a source program node, yielding a reduced node
(see Section 2.3). Each reduction in the grammar is an expression which may contain variables
referring to the attributes of the node. Therefore a reduction function can be constructed by simply
wrapping the reduction expression in a lambda abstraction and a series of lets binding each of the

attributes. For example, the reduction for string nodes looks like this:

fn n — let value = attr[n, value| in ||value

where attr[node, name| extracts the named attribute from a node. Once the value attribute is
bound, the result node is constructed by evaluating the quoted string node (which appeared in
the actual declaration in the grammar shown in Figure 4.1).

A similar function is constructed and compiled for each node type, and then an overall
reduction function is built which dispatches to the right reduction based on the type of each node.
This overall function is built incrementally as the declarations of a grammar are processed, so that

later reductions can make use of syntax defined in earlier declarations.

4.3 Rendering the Expression Language

After a program is reduced to the expr presentation language (via the display reductions
specified in the particular grammar being used), it can be presented to the user using the common

facilities of Lorax. To do so, the program is further reduced to a low-level presentation language.

4.3.1 The view Presentation Language

The view language is a lower-level presentation language. Some of the algorithms of TEX [29]
are used to lay out nodes and construct glyphs, as in e.g. [49]. In contrast to the expr language, all

the elements of the view language specify fonts, colors, and sizes in concrete terms, so they can be
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rendered directly. The main tasks of the reduction from expr to view are to identify the correct font
size for each atom based on the nesting of expressions, and to transform embed/disembed nodes
into border/background colors. Both of these computations involve propagating some information
about the structure of the tree down as the nodes are recursively processed.

The mode, a concept from TEX, identifies the depth of nesting of expressions, and controls
the selection of font sizes for atoms. There are four modes, Display (D), Text (T), Script (S), and
Scriptscript (SS). D and T call for normal-sized text, S is about 30% smaller, and SSS is about
50% smaller. The handling of modes follows TEX’s algorithm in most cases, but deviates from
it when necessary for consistency. For example, typographical convention dictates that addition
expressions in the smaller modes should be set without spaces, but that would clash with Lorax’s
handling of parentheses, so Lorax sets these expressions with proportionately smaller spaces.

Each of the atom types of the expr language is reduced to a chars node. For example, when

a node n having the type keyword and str attribute s is reduced:
n: keyword {str— s} — chars {stri s, font— keywordfont,;,qepn}

where keywordfont, and keywordfont; are both names for the normal-size font for keywords,
and keywordfontg and keywordfontgg name the two smaller versions. mode|n| is an inherited
attribute [9]; except where specified, the mode of each node is the mode of its parent. Except for
a handful of types, most atoms are reduced in exactly the same way, with a different font used for

each type.

Atoms representing string literals get special treatment. They’re surrounded by quotes, and

any white space characters in the string value are replaced by Unicode OPEN BOX characters ( .. ).

n: string {str— s} — chars {str— “+ escapews[s| + ", font— stringfont,,qe[, }

Each of expr’s four sequence types are reduced to a single type, and spaces are inserted
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between the child nodes:

juxt [co,c1,...,¢m] — sequence [cg,c, ..., Cp)

binary [co,c1,...,6m] ——  sequence [co, thinspace, c;, thinspace, ..., thinspace, ¢,,]
relation [cg,c1,...,¢,] ——  sequence [cp, medspace, ¢1, medspace, . . ., medspace, ¢, ]
flow [co,c1,...,cm] ——  sequence [y, thickspace, ¢1, thickspace,. .., thickspace, ¢, ]

A fraction node is reduced to over, which has a configurable line weight, and the mode of

each child is reduced:

n : fraction {numer— ¢y, denom— c1} —  over {top — cy, bottom — c1, weight — 1}

mode|cy] < fractionmode(mode|n))

mode[c;] < fractionmode(mode|n))

fractionmode(D) =T
fractionmode(T) = S
fractionmode(S) = SS

fractionmode(SS) = SS

A scripted node is unchanged except that the mode of the raised and lowered child nodes
is reduced:

n : scripted {nucleus — co, super— ci, sub— ca}

mode|c;] < scriptmode(mode[n])

mode[cy] « scriptmode(mode[n])



37
scriptmode(D) = S
scriptmode(T) = S
scriptmode(S) = SS

scriptmode(SS) = SS

The embed and disembed nodes which represent quotations and other kinds of embedded
code are reduced to border nodes, which draw a colored border around their contents and a
background behind them. The color of each border is determined by the meta-level of the node.

The level of the root node is always 0, and it is incremented when an embed node is encountered:

n: embed {content — c}

— border {weight — 1, margin+— 3, border— b, fill~ f, content — c}

b= bordercolorlevel[c}

J = fillcolorgye)

levelc|] < level[n] + 1

Two series of colors bordercolor; and fillcolor; are pre-defined. bordercolor; is dark blue,
bordercolor; is dark green, etc. Six colors are defined to support several levels of embedding.
fillcolory is white (the background color of ordinary nodes). fillcolor; is a lighter shade of
bordercolor;.

For disembed, a similar border, but the border color corresponds to the parent node’s

meta-level, while the background indicates the level of the inner node:

n : disembed {content — c, levels — [}

— border {weight — 1, margin+— 3, border — b, fill— f, content — c}
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b = bordercolorieyey]

J = fillcolorgye)

level|c|] < level[n] — [

The remaining nodes of the expr language require no special handling, because they do not
affect the mode or meta-level of their sub-expressions.

A handful of additional nodes are provided in view for handling some of the needs beyond
what expr can do. A section arranges its children in a left-aligned vertical stack. A wider space
node, quad, is useful for indentation.

The reduction described in this section is implemented directly in Clojure, not in a Lorax
grammar, because the grammar language does not currently provide any way to declare attributes.
That might be a useful extension; if both inherited and synthesized attributes [9] could be defined,
it would be possible to write type systems for expressions. However, the burden of implementing
this particular reduction manually is modest because the expr language is small and not meant to
be extended.

The smaller modes quickly become hard to read for anything but very simple expressions
(especially on relatively low-resolution displays), so wise language designers (and programmers)
will use them sparingly. The TEXbook [30] gives much good advice about how to use them effec-
tively. Some clear applications of the smaller modes are for constant ratios and exponents, and for

decorating variable names with small integer subscripts and “prime” symbols, as in ' = %332 + agp.

4.3.2 Rendering the view Presentation Language

The view language is consumed by a renderer written in Clojure using the graphics primitives
of Java2D [20]. The renderer recursively inspects the tree, calculating node sizes and layout, and
then actually drawing nodes. The renderer also provides hit-testing for nodes, identifying a list of

view nodes which enclose a given point.
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For each node, the renderer calculates a width w and height h in (floating-point) pixels.
Depending on the node type, there may be a baseline height, b (between 0 and h), which defines
the position of the node relative to a common baseline. When a node has children, the renderer
calculates a horizontal and vertical position (z,y) for each child, relative to the upper-left corner
of the parent node.

For chars nodes, w, h, and b values are calculated based on the string and font via Java2D.
In general, other nodes’ baselines are derived from their children, so that the chars nodes in nearby
parts of the tree are baseline-aligned.

In a sequence, child nodes with baselines are vertically aligned to their baselines, and chil-
dren without baselines are aligned to their centers (and to the collective center of the baseline-
aligned nodes).

The baseline of a scripted node is that of its nucleus. An over node has no baseline.

The delimiters of a group node (e.g. parentheses or brackets) are vertically centered relative
to the contents, and the actual glyph is chosen from a list of variously-sized alternatives. TEX’s
fonts are used for these glyphs, as well as for most symbols reduced from expr/symbol.

Any node can have a color attribute, which causes the single node to be drawn with a
different foreground color.

These definitions are sufficient to get simple expressions to render well, but the current
algorithm lacks TEX’s second alignment step (the axis), so some expressions are not quite properly
aligned (e.g. fraction lines are not aligned with the vertical centers of + and — operators).

The renderer makes several passes over the tree to draw different layers. The first pass draws
only border nodes, which therefore appear “behind” all other elements. The nodes are drawn in
pre-order, so that parent borders and their background fill are drawn behind any child borders. On
the second pass, an indicator of the selected node is drawn, so that it will appear above the border

rects, but behind the actual content. The final pass renders all non-border nodes.
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4.3.3 Renderer Implementation

The renderer is written in a simple functional style, freely traversing the node tree as much
as necessary. However because some of the necessary calculations are relatively expensive, the
renderer initially performed poorly, taking on the order of 2-500ms to render a small program.
This was easily improved by taking advantage of the fact that much of the renderer’s time is spent
in two kinds of referentially-transparent functions. The function that calculates the size of a text
glyph given the characters and font is simply memo-ized, so that no more than one call is ever
made for each unique glyph. The functions that calculate the position of each node are also cached,
but only for the duration of a single rendering pass (mostly to avoid consuming arbitrary memory
for no-longer-needed cached values when a succession of updated trees is rendered one after the
other). That way the renderer performs well (10-20ms) despite being written in the most direct
way, making no attempt to avoid redundant calculations. Clojure’s functional nature and macro
facility made it easy to implement this algorithmic change “after the fact,” without requiring the
bulk of the rendering code to be re-written.

The renderer currently violates good functional programming style by performing the actual
drawing via side-effecting operations during the traversal of the node tree. In hindsight, it would
have been better to have the traversal yield a list of drawing commands to be executed later. For
instance the layering of different kinds of visual elements could have been handled declaratively,

rather than as a side-effect of traversal order.

4.3.4 Meta-reduction of expr

When editing regular programs, the expr language is meant to be invisible. When editing a
grammar, the expr nodes of each presentation reduction are the subject at hand, so it’s necessary
for understanding to make them visible. To accomplish this, another hand-written reduction is
used when editing grammars. This reduction decorates each node with a visual indication of its

type, location, and size. This reduction is somewhat idiosyncratic in that it never actually replaces
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3 + |cube
expr +— 1+ 2

Figure 4.3: Program fragment using a cube node, which hasn’t been defined.

a node, but rather it inserts additional nodes (super-scripted border nodes), which surround the
original nodes. Also, this reduction needs to be restricted to operate only on expr nodes of the
original program, and not any nodes that might have been introduced by a reduction that was
applied earlier. The reduction function is wrapped in a higher-order function that tracks which
nodes remain to be reduced, using the mechanism described in the previous section.

The result can be seen in any of the examples of presentation reductions presented earlier.
The idea of using a higher-order function (combinator) to assemble multiple simple reductions into

something more complex came up again and again in building the prototype.

4.3.5 Fallback Presentation Reduction

Another useful reduction is one that is able to reduce any arbitrary node, imposing no
restrictions whatsoever on the type or value of the node. This reduction can be used to show the
internal structure of a node, disregarding the presentation reduction, or for displaying nodes for
which no presentation reduction is available. This might be because the node’s type is not declared
in any applicable grammar, or because the presentation reduction itself is missing or unusable. All
of these scenarios represent situations that Lorax aims to handle gracefully, because all of them
can arise in the process of editing a program and/or the grammar that defines its language.

The solution is a fallback reduction, which takes any node and reduces it to a node in the
view language. A primitive-valued node is shown with a default style (similar to expr’s int, string,
or name). A map- or sequence-valued node is surrounded by a border to set off the node as special,
with the node type at the top and a series of lines with the attributes/indices and their values.

In Figure 4.3, the programmer has attempted to write 34 (1+2)2, but has used a “cube” node

type for which no reduction is present. The fallback reduction makes the structure of the program
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clear in the absence of any specific knowledge of the “cube” node type, and gives the programmer
the information she needs to figure out how to fix it. In this case she can either add a declaration
for “cube” or change the program to use a different node type. This implementation does a good
job of drawing attention to nodes that aren’t handled properly and thus need attention, but it may
be overly jarring when used within the context of an otherwise valid expression. Therefore, there
may be a role for a less obtrusive reduction which shows any properly-defined children and gives

an indication that something is amiss.

4.4 Editing

The Lorax editor assembles the components described in the previous sections, along with
a GUI shell. Each program is displayed in a separate window within a single process. When
a grammar is used in the rendering of a program, changes to the grammar are reflected in the
program’s display immediately. Grammars and other kind of programs are presented and edited in
the same way, the only difference being that a different sequence of reductions is applied. Neither
the Ul nor the programs themselves currently provide any way to specify the reductions that are
to be applied to a particular program; it’s up to the user to do that when invoking the editor.

An editor window (see Figure 4.4) shows a program in a scrollable panel, accompanied by
some additional information about the selected node, if any. Actions to edit the program are

available in the menus, or via keystrokes.

4.4.1 Editor Pipeline

To convert a program into view nodes for rendering, the editor applies a series of reductions
in turn, as diagrammed in Figure 4.5. Some of the reductions are baked into the platform, while
others are compiled at runtime from the grammars that are specified when the editor is invoked.
The first set of reductions takes different program elements from the source language to the expr
language. A special reduction handles names, and another introduces a missing node wherever

the grammar in effect defines an attribute (even if optional) but the program doesn’t actually
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Figure 4.4: The Lorax editor, showing a portion of the grammar for the core language.

contain such a node. Then the reduction defined by the grammar is applied. At this point, all
language-specific syntax should have been replaced by expr nodes, if the program and grammar
are correct.

Next, a pair of reductions produce the final expr program, inserting parentheses where they
are needed, and reducing any remaining non-expr nodes in the generic way. Next the expr-to-view
reduction reduces the program to the view nodes that will be rendered, and finally that program
is handed to the renderer for layout and drawing.

The editor itself takes charge of executing the reductions, keeping track of how the final view
nodes were derived from the source program. Thus the end product of the rendering pipeline is a
target program in the view language, plus a map identifying the target program node that arose
from each source program node. Because a source program node often reduces to a sub-tree rather
than a single node, not every target program node is identified with a source; only the root of each

sub-tree needs to be tracked. The editor uses this tracking of nodes to let the user interact with the
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Figure 4.5: Reductions in the editor pipeline.

nodes of the source program, even though what’s actually being rendered is the target program,
many layers of reduction removed.

The need to map target nodes back to source nodes drove many decisions about how to repre-
sent programs. The presentation reduction must operate on one node at a time, and must produce
a single target node. For example, the arguments of an app node are held by a characteristic args
node mostly so that the editor can identify the resulting sequence of nodes and provide appropriate
editing actions on them. For now, expand reductions are not so restricted, because Lorax does
not try to trace nodes of reduced programs back to the corresponding source node. However, that
might become desirable in the future, for instance in order to provide proper source locations for

runtime errors.

4.4.2 Selection

One of the main tasks of the editor is to make the structure of the program apparent to the
programmer. Rendering the nodes of the program in a rich, familiar notation enhances readability
but may not always make the structure of nodes very clear. In order to make a change to the AST,
the programmer needs to be aware of this structure. The editor’s Ul for selection facilitates this
awareness by visually emphasizing the relationship between a single selected node and its children,
and by providing a way to move between nodes that is defined in terms of the source AST. Thus
the structure becomes visible once it is salient, but is left somewhat implicit or even obscured

otherwise.
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Unlike a text editor, where the typical unit of selection is a character position (i.e. the lowest
level of the program text), in Lorax the selection identifies a single source-program node which can
be at any level of the source tree. A new node can be selected by clicking anywhere in the view.
The new selection node is the deepest node whose boundary encloses the clicked location. Once
a selection has been established, a new node can be selected by invoking an action to move the
selection to a neighboring node using the notion of relative position defined in the next section.
Currently there are actions to select the parent, next or previous sibling, or the first visible child.

The single selected node is the target of all editing operations. Limiting selection to a single
node supports many but not all editing operations that might be desired, so a more sophisticated
model might support more notions of selection. For example, multiple sequential nodes could be
selected and moved as a unit.

Identifying program elements this way effectively exposes the tree structure of the program
to the programmer in a tangible way and encourages the programmer to think about the program
in terms of this structure. Whether or not this feels natural or is easy to understand represents

one test of the overall concept of editing the AST.

4.4.3 Identifying Nodes by Position

Selection operates in terms of source nodes and their relationships to each other, but it also
reflects the concrete representation of the program, using the mapping of target nodes to source
nodes. Because each target node is identified with a rectangular area of the view, and because each
source node is identified with a root target node, the editor can identify the boundary of the visual
representation of each source program node. When reduced to concrete syntax, the unordered
children of a map-valued node are effectively ordered, and some children may be ignored.

The parent node is simply the parent in the usual sense. The editor assumes that every
ancestor of every visible node is itself visible. Only the root node has no parent.

The wvisible children of a node are the subset of the node’s children for which there is some

view node, ordered by their visual position. That is, the visible children do not include any child
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Figure 4.6: A simple expression in Lorax, annotated to show relative node positions.

nodes which were ignored by the presentation reduction, and the otherwise unordered children of
a map-valued node are ordered according to how they appear in the visual representation of the
node. The order is from left to right (sequences) and top to bottom (sections and fractions). The
children of a subscript node are ordered as follows: nucleus, superscript, subscript.

The wisible siblings of a node are the visible children of the node’s parent. The next sibling
is defined in the obvious way for all nodes which are not the last visible child of their parent. The
previous sibling is similarly defined (except for the first visible child).

Figure 4.6 shows a simple expression, annotated to indicate the parent, sibling, and child

nodes of the node labeled “selected”.

4.4.4 Edit Actions

The editor provides a range of operations on source nodes, which the user can use to construct
and modify node trees. The examples in the next chapter will show them in action.

There are just two primitive operations.

Delete removes the selected node from its parent. If the parent is a map, it will no longer
have any value for the attribute that was occupied by the selected node. If a sequence, the node is
removed and any following children move to smaller indices. Note that a simple delete removes an
entire subtree, not just the selected node itself.

Insert adds a new node as a child of the selected node with a particular attribute name or
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index. If the selected node is a map, any previous child with the same attribute name is replaced.
If a sequence, the new child pushes any existing children to the right.

All other edits are composed out of those two primitives:

Replace deletes the selected node and inserts a new node in the same position.

Swap with previous exchanges the places of the selected node and the previous sibling, by a
sequence of three replace operations. Swap with next is similar.

Insert parent Interposes a new node between the selected node and its parent, by deleting
the selected node, constructing a new node with it as a child, and then inserting the new node in
the same position.

Copy does not affect the selected node, but saves a reference to it as a separate piece of editor
state (the clipboard).

Cut copies and then deletes the selected node.

Paste replaces the selected node with the contents of the clipboard.

When a new node is to be introduced, a simple interface is presented to allow the node’s type
to be specified. Another Ul allows primitive values to be edited.

Before each edit operation, the current source AST and the identity of the selected node are
pushed onto a stack of previous states. When the undo action is performed, the most recent state
is popped from the stack and restored. Because each edit involves O(logn) nodes, this is efficient
enough for extended use.

When any editing action changes the source AST, the editor re-reduces the entire program
and then redisplays the new reduced target tree. When a grammar is edited, the grammar itself is
re-displayed, and then any reductions that were compiled from it are regenerated and any programs

using them are redisplayed as well. This environment allows languages to be redefined dynamically.

4.5 Example: Entering Expressions

Here’s how the Lorax editor can be used to enter some simple expressions.

Suppose you want to evaluate the expression (1+ 2) x 3. Begin with an empty core-language
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program, which is a single program node, with no children. The core grammar requires at least
one doc or expr node in the program, so the editor supplies an empty node to start you off:

?

Select the node and type the character ‘1’. The editor infers you want to replace the missing

node with a new int node in the core language, and does so, leaving the new node selected:

1

Now we want to add 2 to that, so first type ‘+’. The editor assumes you want to replace the
selected node with a new plus node, and it adds the selected node as the first child of the new
node (this is the insert parent action with the type plus for the new node). Now the missing right

argument is selected:

1+

Simply typing ‘2’ completes the first sub-expression:

1+12

Now we want to multiply this expression by 3, but you can’t simply add the times node yet,
because that would make a new node with only 2 as the left argument. Instead, use the “select
parent node” action (from now on, 1) to move the selection to the plus node (or just click on the
+ sign):

11412

Now type ‘*’ to create a new node. The previous selection becomes the left child, and Lorax
inserts parentheses to indicate that the actual grouping of sub-expressions is contrary to what would
be suggested by the normal spacing of the operators alone:

(1+2)x[?

Finally, type ‘3’ to complete the expression:
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(1+2)><3

For this kind of simple expression, the Lorax editor’s efficiency is quite similar to that of
entering text. In fact the sequence of characters is not much different: ‘1+27*3’ as opposed to, say,
‘(1+2)*3’. Assuming you use only the keyboard, the actual number of keystrokes is fewer by one
with Lorax.

Alternatively, you could have entered the same expression in “top-down” fashion using the
sequence ‘*+1—27—3’. Interestingly, this seems to mimic the process of typing a prefix expression,
with ‘—’ taking the place of spaces between sibling nodes, and ‘]’ acting as a ’)’ to close one
node and return to the parent. I suspect in practice this is more intuitive than it sounds when
described in that way, but only experience will tell (just ask anyone who has learned to use an RPN
calculator). The editor attempts to support both styles equally well.

Furthermore, Lorax’s rendering of the expression includes appropriate spacing, which you
might feel the need to add if you were entering text, maybe like this: ‘(1+2) * 3’ or ‘(1 + 2)*3’,
depending on your preference. This kind of manual type-setting is extra work for the programmer
(imagine how many hours each year world-wide are spent entering and adjusting white-space!), and

it’s not very effective anyway. None of the three alternatives is particularly readable.

The host language provides syntax for more specialized purposes also, and these nodes aren’t
quite so easily accessed. For example, to generate a list of the first 10 perfect squares, you can use
a sequence comprehension. Again, starting with a blank program:

7

Use the insert node action to create new node, entering the type for. The new node includes

a variable binding. The editor supplies the default name,  (which we won’t change):

] x <+ 7

For the expression, first enter a variable reference by typing ‘x’. This inserts a reference to

a nearby variable, which happens to be x. Alternatively, hold down the insert reference modifier
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keys and click on z.

| x— 7

Use the insert parent action, entering square for the type:

2|z 7

Now move the selection to the next sibling twice (—, —, or just click on the last ‘?’).

2|z [

Insert another node, this time a range.

2 |z .7

Enter 1 and 10 for the range’s min and max:

2 | z <+ 1./10

And that’s it. Switching to Lorax’s evaluation view:

s 22 | z <+ 1..10
— 1,4, 9, 16, 25, 36, 49, 64, 81, 100

In this case, there is some extra effort to enter the for, square, and range nodes. That’s
the price of being able to add arbitrary nodes to your language. Furthermore, the editor UI could
and should be extended to make this penalty as small as possible, for example, since the keystroke
‘f’ has no particular behavior, it could offer a choice of all known node types beginning with ‘f’.

These examples hopefully give a sense of how an editor can offer both generality and rea-
sonable usability, but the current Lorax editor is certainly only a starting point. Different UI
interactions would be appropriate for different kinds of devices (say, emphasizing gestures over
keyboard input for a device with a touch-sensitive screen), or for different users (say, something

more like a mouse-driven structure editor for end-user programming applications).



Chapter 5

Case Studies

To evaluate the success of Lorax at supporting the addition of new language constructs, I
implemented two of them, using the grammar language to extend the Lorax core language. The
first is a simple extension of the syntax for constructing lists (one of the basic data types of the

core language), and the second introduces a completely new kind of value.

5.1 Defining the Core Language via Syntax Extension

The core language is built via syntax extension on top of the kernel language, so its definitions
can serve as a test of the suitability of Lorax’s grammar facilities for building these kinds of
extensions. This section compares one of the declarations from Lorax’s core language with the
corresponding elements from Lisp and free-form languages in terms the effort invested and the
benefit accrued.

Several core language nodes provide support for using the primitive cons-list values of the
Clojure platform, which are one of the basic tools for organizing data in any Lisp. These extensions
employ a handful of Clojure primitives to expose the native list values of the platform, and the rest

of the syntax is built around them.

5.1.1 List Comprehension in Lorax

Figure 5.1 shows the declarations of the two primitive constructs for working with with lists

(cons and match-cons), and a list comprehension (for) node constructed from them. For the
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expr < cons {first:expr, rest:expr}

:kwrEI — cons(, lazy—seq())‘

expr < match-cons {ezpr: expr, first':bind, rest':bind, body:expr, else:expr}

flow
rel
match " expr with " | first'| 1 | rest/ =™ body else [else — |let z = |expr
P

in if seq(z) then else
where

= first(z)
= rest(z)

expr < for {z/:bind, seqiexpr, ezpr’:expr}

flow
P [P &)

where

f=fns — (ymatch s with :a:s - :f(zs) else nil)

Figure 5.1: Declaration of the cons, match-cons, and for node of the core language.

present purpose, the first two nodes can be regarded as part of the base language, and the list
comprehension syntax as an extension to be added to that language.

The ezpand reduction for the for node evaluates its seq child, and then applies a recursive
function to it. This function attempts to match its argument as a non-empty list (using match-
cons). If so, the x child is bound to the first value, and expr is evaluated and then the function is
applied to the rest of the list. Note that one of the bindings (x) was supplied by the programmer,

and the other (xs) is local to the reduction.

5.1.2 List Comprehension in Lisp

For comparison, the definition of a Clojure macro with equivalent capability is shown in
Figure 5.2. The macro operates in a very similar way to the Lorax syntax declaration, so a fairly
direct comparison of the two is revealing. The two declarations, and the resulting syntax, differ in
several ways.

Both declarations make use of quasi-quoted syntax to construct a reduced program fragment.
In Lorax, the rendering of quoted nodes using a contrasting background color provides a clear visual

cue of the embedded structure. It’s clear at a glance where the three components of the syntax
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=> (defmacro simple-for

[[x xs] expr]
“((fn f# [s#]

(if (seq s#)

(let [["x & r#] s#]
(cons ~expr
(lazy-seq (f# r#))))))
“xs))

=> (simple-for [x (range 1 11)] (* x %))
(1 49 16 25 36 49 64 81 100)

Figure 5.2: List comprehension macro in Clojure

are substituted into the reduced program. In Clojure, quotation and un-quotation are indicated
with lexical signifiers (as in ‘“(...)’ and ‘"x’), and it’s up to the reader to count parentheses to
understand what is evaluated when. To avoid unintended variable capture, names introduced in
the Clojure reduction are marked with another signifier (as in ‘x#’) which causes a new name to
be generated each time the quotation is evaluated. In Lorax, no such signifiers are needed, because
variable references are unambiguous—the meta-compiler takes care of generating new, unique labels
when the quotation is expanded.

Thus the reduction/macro is of roughly equivalent complexity in the either system, but
Lorax’s handling of quotations and variable references makes the reduction both easier to read (via

visual cues) and easier to write (by avoiding subtle issues of variable capture).

5.1.3 Concrete Syntax

In addition to this definition of semantics, Lorax’s declaration defines a new syntax for the
comprehension, which is designed to be familiar from both the mathematical notation of set theory
and the comparable construct in Haskell. In Lorax, the reduction for this syntax is entirely trivial,
simply giving the arrangement of the three child nodes and the symbols to be placed between
them. The effort involved to provide such a simple reduction is essentially nil. For the programmer

using the extended language, this syntax gives list comprehensions a distinct appearance, aiding
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comprehension.

Returning to Clojure, the new syntax is identical to any other element of the language,
with little more than the name “simple-for” distinguishing it from any other expression. A more
illustrative comparison is with Haskell’s similar construct. In Haskell, one can write the same

example as follows:

[ x*2 | x <= [1..10] ]

which has the same basic structure as the Lorax version, except that it suffers slightly for being
limited to the ASCII character set.

However, Haskell’s list comprehension syntax is baked into the compiler, and the programmer
has no ability to add a new syntax of this kind without modifying the Haskell compiler’s front-end.
This is typical of languages with free-form syntax; what the language provides may work well, but
the specification of syntax is inaccessible to the user (i.e. it’s outside the reach of what can be

accomplished with a reasonable effort).

5.1.4 Evaluation

Lorax’s facilities for declaring new syntax and specifying semantics and concrete syntax
allow new syntax to be introduced with an effort that compares well to Lisp’s macro facility.
However, both the declaration of the new syntax and its use are significantly more readable than
the corresponding Lisp programs, or even the syntax from Haskell which is designed for just this
purpose. Meanwhile, the effort involved is much less than the effort would be to add such a construct

to a language such as Haskell.

5.2 Introducing a New Runtime Value

The preceding section showed how the facilities of the platform can be exposed and wrapped
in a novel syntax. This syntax helps the programmer to understand the program, but as soon

as the program is reduced to the kernel language for evaluation, the syntax is gone and only the
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primitive values remain. A more ambitious goal for syntax extension is to augment the language
with a new kind of runtime value. This allows programs to operate on a new kind of data, and
allows the programmer to see results of computation in the natural form. The next example shows
how a new kind of value can be introduced, and how it supports writing a program in a much more

natural and comprehensible way.

5.2.1 Enumerating the Positive Rationals

In a delightful Functional Pearl [17], Gibbons et al. present a series of Haskell programs which
generate the infinite series of all positive rational numbers. They begin with the idea of traversing
the infinite matrix a;; = i/j which contains every positive ratio, but also contains many equivalent,
unreduced ratios (e.g. /2, 2/4, ...).

The authors show that a series containing all positive rationals in reduced form, without
duplicates, is obtained by iterating the function z’ = 1/(|z] +1 — {z}),! beginning with = = 1.
This is a surprisingly simple expression, but it is somewhat computationally undesirable in that
calculating |z| and {z} involves division.

Interestingly, this formula can be implemented using only “a constant number of arbitrary-
precision integer additions and subtractions, but no divisions or multiplications” by choosing a
different representation for ratios. It happens that the five necessary operations—reciprocal, floor,
addition of an integer, negate, and fractional part—can all be efficiently performed on ratios rep-
resented as reqular continued fractions. A continued fraction has the form?

1
ap +

ay +

1
1
R
Qn

A regular continued fraction is one in which all the coefficients except ag are positive, and a, > 1

(except for the special case 1). Every rational has a unique representation as a regular continued

! In the authors’ notation, || is the floor, or whole-number part of x, and {x} is the fractional part: {2z} = z— |z,
z > 0.

2 Incidentally, this expression is a frequently-cited exception to TEX’s rules for formatting fractions—all the nested
expressions are best typeset at the same size, to emphasize the recursive structure. Lorax does not provide a way to
override that behavior, so continued fractions do not look quite this nice in Lorax!
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fraction.

Having arrived at this elegant result, the authors proceed to reduce their formulas to the
notation of Haskell for implementation, using lists of integer coefficients to represent continued
fractions. In the process, the origins of the code are completely obscured by the loss of the original

notation. For example, one of four cases for negation of a regular continued fraction looks like this:?

negatecf [ng,2] = [—ng — 1, 2]

It’s up to the reader (of the paper or of the code) to decode the representation of fractions being
used here and work out how this corresponds to the algebra that motivated it. However, in the
proper notation, the same definition reads as simple algebraic equation which is easily understood

and checked:

—(no+;)=(—no—1)+;

The awkwardness of Haskell’s notation is an impediment to understanding the program as an
artifact, but it also obscures the program’s meaning in a more subtle way. The choice of integer
lists as a representation, as opposed to defining a new algrebraic data type with a similar recursive
structure, was probably driven by the relative economy of the notation for lists (which is provided
by the Haskell parser as a special case). As a result, accurate type information is lost, which makes

the program harder to understand both in the writing and at runtime.

5.2.2 Continued Fractions in Lorax

In Lorax, one can extend the language with a new kind of value for these fractions. I did
this by defining a continuedFraction node which defines a recursive data type. It is displayed in
the obvious way, except that when the continuation is the “null” value, it is displayed in a slightly
simplified form. The expand reduction is new—it reduces to an expression which evaluates the

component expressions and then constructs a node. Therefore the node itself becomes a runtime

3 Actually, what’s shown in the paper has been pretty-printed for publication [25]. In the actual source code, it
must have looked something like this: negatecf [n_0, 2] = [-n-0-1, 2].
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value. Several match nodes provide pattern matching on the runtime shape of the argument,

and are used to identify the cases in each operation. Figure 5.3 shows the declarations of the five

operations, and some simple examples of their use are shown in Figure 5.4.

Floor (integer part) taking an expression evaluating to a c.f. and yielding an integer.
expr < ip {ezpr: expr}

[ — |match

1
n+— = n
+d

else — fail

Fraction part taking an expression evaluating to a c.f. and yielding a c.f.
expr « fp {ezpr’:expr}

1 1
'+ 0+

else — fail

Reciprocal for continued fraction values

expr < recip {ezpr”:expr}

= |match o

1
L "
0+ i d

else — 0+l
@

where

Add an integer (on the left) to a continued fraction
expr < plus {mt:expr, cf:expr}

1 1
"y— i 2
'+ = | nt| + n ) + I

else — fail

expr < negate-2 {ezpv’”:expr}

match ¢

Ao o o
else = match ¢

1

) . a
1
7. [(=nm — 1)+

2+o0

I

else - match ¢

1

1 / y — v
mn . 3
[ et — (—n/ 1)+”_1‘+7
P am
a

else & match ¢/

1
1
/ 1
ey i (—pmm — 1 E -
am (m-1)+—
am
else — fail
where

¢ [eor]

Figure 5.3: Grammar for operations on continued fractions as runtime values.

Note that these declarations are somewhat straining the current capabilities of Lorax. Ideally
the construction of a runtime node would be as simple as adding a second level of quotation to
the expand reduction, but the current prototype does not handle that properly, so a bit of extra

ceremony is required. In fact, in order to achieve the relatively understandable reductions shown in
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$ let ¢ = 2+ o0 in [c|, {c}, cL1+4¢ —c

1
- 2,0+0,04+——3+0,-2+0
2+ o

1
3+ o

s let d = 0+ in |d, {d},d ' 1+d —d
1

-1 1
’ Jr1+
2 + o

1 1

S 0,04 58+ 0,1 45—

S let e = 2+ !

— in lel, {e} el 1+e —e

3+
1 _r _r
— 2,0+3+070+2+ 1 ,3+ﬁ,-3+1+ 1
3+ o 2+ o
1 1
i0l3 . . [
S ratlo[ + O], rat10[2 +—3 m o}, ratio|1l + 2+ - 1 '
7 10
o e

Figure 5.4: Operations on continued fractions.

Figure 5.3, I had to manually define a total of seven different match nodes, out of a possible 16 for
patterns up to three levels deep. It would be much more convenient to have a general pattern-match
construct supporting multiple patterns, each a node with bindings substituted for some of the child
nodes, but Lorax’s current approach to reductions cannot handle that. Nevertheless, with the hard
work of defining syntax and semantics out of the way, the actual algorithm can be expressed quite
naturally.

The expression which produces the next fraction in the series is wrapped in a function:

nest = fn ¢ — ((|c]+ 1)+ —{c})!

Note that in this form the expression does not exactly match what was shown earlier, because
some algebraic manipulation is necessary to put it into a form that uses only the operations that
have been defined. The resulting expression contains one node (operator) for each operation to be
performed. For instance, the original expression hid a negation and an addition operation behind
a single — symbol, but my version makes the two operations explicit. Also, Lorax inserts a pair of

parentheses to clarify the order of evaluation of the two addition operations, another point which
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$ ratios[i] | i + 0..14

where

ratios = ratio[r] | r < rationals
rationals = neat (1 + o)

nest = fn ¢ — ((|c|+1)+ —{c})!
1

1 1 3 2
— 17?7 27 ?7 ?7 ?7 37 _______ 4

Figure 5.5: Enumerating the rationals, using continued fractions.

is left to algebraic convention in the original. Other than that, my choice of notation resembles the
original precisely.
Now generating the infinite series in continued fraction form is as simple as applying the

iterate operator (*) to the next function, using 1 as the initial value:

rationals = nezt*(l + O)
The complete expression and the first 15 fractions (converted to simple ratios) appear in Figure 5.5.

5.2.3 Evaluation

Lorax allows a novel runtime value to be defined entirely in terms of nodes and reductions.
Once a constructor and some syntax for pattern matching on the new values are defined, it’s quite
straightforward to implement operations on the new values, and to write programs which make use
of the values and operations on them.

In the case of continued fractions, the notation is clearly superior to what can be done in
a textual language, in terms of aesthetics and ease of understanding. Furthermore, the improved
notation encourages the use of a proper data type, as opposed to the awkwardness of Haskell which
pushes the programmer towards using a generic data type which is slightly more convenient.

One thing to note is the use of identical + symbols for two distinct addition operations
(first addition of integers, and then addition of an integer to a continued fraction). It might be
preferable to use a different symbol for the new kind of addition. Because that symbol is specified in

one place—the presentation reduction for that node—it’s trivial to make the switch. On the other
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hand, this may be a case where some ambiguity in the visual representation can actually enhance
readability. If that freedom leads to an incorrect program, it’s easy to click on either node and the
editor will indicate which + is of which type. Alternatively, one might want to use the same kind
of “plus” node for either operation and have the correct implementation determined automatically
(either by analyzing the types or by checking the values to runtime). The latter approach is in fact
what Clojure’s built-in + operator does for integer, floating-point, and rational values, but Lorax
does not currently attempt to provide such a mechanism.

However, the current limitations of Lorax’s approach to reductions make the job of defining
these operations more arduous than it should be. A more general mechanism for implementing

pattern-matching is needed to make this attractive.

5.3 Final Notes

Online syntax checking is a significant boon to developer productivity (as evidenced by the
general adoption of syntax-highlighting editors and interactive-compiling IDEs), and Lorax provides
much of the benefit of this technique through its simple grammar language. However there is
one place where this checking is not effective: the contents of quoted nodes may have any type
whatsoever, and an un-quote node must be allowed to appear anywhere at all. This is a consequence
of the fact that Lorax grammars specify only local structure. For example, to properly constrain
the nodes of a presentation reduction, it would be necessary to require that the value produced by
the reduction is a node in the presentation language. As it is, this kind of error is not discovered
until runtime (i.e. when the editor attempts to apply the reduction). And lacking this kind of
information, the editor is not able to provide reasonable suggestions when editing quote nodes.
This is a significant gap, but adding what amounts to a type system to Lorax for this purpose
alone seemed ill-advised. Of course, many of the languages people want to use are statically typed,
so a more complete system will probably need to solve that problem anyway.

The most significant limitation of Lorax as a practical tool is its lack of integration with

existing tools. The prototype editor could be developed into a stand-alone tool, and it could
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perhaps be used to generate traditional source or object code for use with another system. A
more ambitious goal would be to integrate this style of editing into an existing IDE. Ultimately,
many other integration points would need to be addressed, including most obviously source code

management, but also any and all tools that aim to present or analyze source code.



Chapter 6

Conclusion

In this thesis, I present tools for defining a language in terms of a grammar for ASTs and
reduction to a general-purpose presentation language, as well as a structure editor for any such
language. The reductions are written in a new meta-language which is defined in the same way,
from syntax extension of a minimal kernel language. The Lorax editor provides superior readability
of simple programs, plus accurate rendering of mathematical notation. It also eliminates some of
the work of entering and modifying programs, offsetting the potential downsides of the structure
editing approach.

Moreover, by reducing the difficulty of implementing syntax extensions, and extending the
scope of what extensions can do, the system makes the creation of a new language as an extension
of a kernel language much simpler and more powerful than before. Much of the work to render and
provide editing for language elements is done in a general way, via the presentation language. New
languages and new constructs can be specified quite economically as reductions to this language,
which provides primitives for the commonly-used visual elements, and can easily be extended with
additional symbols.

I believe this expressiveness has the potential to change the way programmers think about
their languages. There currently exists a large gulf between what it is possible to do with an “in-
ternal” DSL (defined in terms of the syntax of the host language) as compared to a “external” DSL

(for which you have to write a parser, etc.) The former is heavily constrained by the host language’s

syntax, while the latter is a relatively intimidating project. In Lorax, un-constricted syntax exten-
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sion allows for much more significant additions the the host language, while its flexibility makes
defining a new, separate language much less of a chore. Both options would take advantage of the
same tools and methods, making the decision of which way to go much less fraught.

By representing source code in a way that reflects its structure, Lorax also makes it much
more available for analysis and inspection. Therefore, Lorax programs can take the place of the
algebraic data types or other data structures commonly used to represent programs inside compilers,
static analyzers, and other tools. In many cases where it previously wouldn’t have been worth the
effort to construct a parser, Lorax can provide a rich, readable syntax with very little work. This
could be a great help in programming language research and teaching, whenever small languages
are defined in the course of exploring some point of language design or implementation.

One intriguing consequence of Lorax’s approach is that the visualization of the program no
longer has to be unambiguous. Instead, it can take whatever form is most appropriate to the task at
hand. In some cases, as in the continued fraction example, this might mean having symbols on the
page which look identical but mean different things. This isn’t a problem because the editor knows
which is which and can clarify when needed, but it does have one serious implication: when the
program is printed out (or captured as a figure for publication), that extra information is thrown
away, and the printout does not actually specify a unique program. To turn a printout back into
source code would involve parsing, which is exactly what Lorax scrupulously avoids. However,
in Lorax you can always address this problem by simply writing a second presentation reduction
which is better suited to your current purpose.

As the old joke goes, text is the worst way of representing source code, except for all the
others. My hope is that in time we’ll get tools that handle trees well enough that we can finally

leave text behind.
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